FORUM
 
=> Daha kayıt olmadın mı?

FORUM - FONKSİYON

Burdasın:
FORUM => MATEMATİK => FONKSİYON

<-Geri

 1 

Devam->


admin mevlut (Ziyaretçi)
30.12.2008 19:20 (UTC)[alıntı yap]
FONKSİYON

A. TANIM
A ¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun. A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir. Fonksiyonlar f ile gösterilir.
" x Î A ve y Î B olmak üzere, A dan B ye bir f fonksiyonu f : A ® B ya da x ® f(x) = y biçiminde gösterilir.


Yukarıda A dan B ye tanımlanan f fonksiyonu
f = {(a, 1), (b, 1), (c, 2), (d, 3)}
biçiminde de gösterilir.
 
* Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.
* Görüntü kümesi değer kümesinin alt kümesidir.
* s(A) = m ve s(B) = n olmak üzere,
      I) A dan B ye nm tane fonksiyon tanımlanabilir.
     II) B den A ya mn tane fonksiyon tanımlanabilir.
    III) A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2m . n – nm dir.
*  Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesiyorsa verilen bağıntı x ten y ye bir fonksiyondur.
 
B. FONKSİYONLARDA DÖRT İŞLEM
f ve g birer fonksiyon olsun.
      f : A ® IR
     g : B ® IR
olmak üzere,
I) f ± g: A Ç B ® IR
   (f ± g)(x) = f(x) ± g(x)
II) f . g: A Ç B ® IR
    (f . g)(x) = f(x) . g(x)
III)

   
 
C. FONKSİYON ÇEŞİTLERİ
1. Bire Bir Fonksiyon
Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir.
"x1, x2 Î A için, f(x1) = f(x2) iken
x1 = x2 ise f fonksiyonu bire birdir.
*  s(A) = m ve s(B) = n (n ³ m) olmak üzere,
    A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı
   
 
2. Örten Fonksiyon
Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.
*  f : A ® B
    f(A) = B ise, f örtendir.
*  s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı
    m! = m . (m – 1) . (m – 2) ... 3 . 2 . 1 dir.
 
3. İçine Fonksiyon
Örten olmayan fonksiyona içine fonksiyon denir.
*  İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.
*  s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı mm – m! dir.
 
4. Birim (Etkisiz) Fonksiyon
Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.
     f : IR ® IR
     f(x) = x
birim (etkisiz) fonksiyondur.
*  Birim fonksiyon genellikle I ile gösterilir.
 
5. Sabit Fonksiyon
Tanım kümesindeki bütün elemanları değer kümesindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.
*  "x Î A ve c Î B için
     f : A ® B
     f(x) = c
fonksiyonu sabit fonksiyondur.
*  s(A) = m, s(B) = n olmak üzere,
    A dan B ye n tane sabit fonksiyon tanımlanabilir.
 
6. Çift ve Tek Fonksiyon
f : IR ® IR
f(– x) = f(x) ise, f fonksiyonu çift fonksiyondur.
f(– x) = – f(x) ise, f fonksiyonu tek fonksiyondur.
*  Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.
*  Tek fonksiyonların grafikleri orijine göre simetriktir.
 
D. EŞİT FONKSİYON
     f : A ® B
    g : A ® B
"x Î A için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.
 
E. PERMÜTASYON FONKSİYONU
     f : A ® A
olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.
A = {a, b, c} olmak üzere, f : A ® A
f = {(a, b), (b, c), (c, a)}
fonksiyonu permütasyon fonksiyon olup biçiminde gösterilir.
 
F. TERS FONKSİYON
f fonksiyonu bire bir ve örten ise, f nin tersi olan f – 1 de fonksiyondur.
 

 
*  Uygun koşullarda, f(a) = b * f – 1(b) = a dır.
*  f : IR ® IR, f(x) = ax + b ise,

 
   
*  (f – 1) – 1 = f dir.
*  (f – 1(x)) – 1 ¹ f(x) tir.
*>  y = f(x) in belirttiği eğri ile y = f – 1(x) in belirttiği eğri y = x doğrusuna göre simetriktir.
 
*  B Ì IR olmak üzere,
   
    f(x) = ax2 + bx + c  ise,
   
 
*  B Ì IR olmak üzere,
   
   f(x) = ax2 + bx + c  ise,
  
 
G. BİLEŞKE FONKSİYON
1. Tanım
      f : A ® B
    g : B ® C
olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.
(gof)(x) = g[f(x)] tir.
 
2. Bileşke Fonksiyonun Özelikleri
I) Bileşke işleminin değişme özeliği yoktur.
   fog ¹ gof
 

Bazı fonksiyonlar için fog = gof olabilir. Fakat bu, bileşke işleminin değişme özeliği olmadığını değiştirmez.
 
II) Bileşke işleminin birleşme özeliği vardır.
    fo(goh) = (fog)oh = fogoh
III) foI = Iof = f
    olduğundan I(x) = x fonksiyonu bileşke işleminin birim (etkisiz) elemanıdır.
IV) fof – 1 = f – 1of = I
    olduğundan f nin bileşke işlemine göre tersi f – 1 dir.
V) (fog) – 1 = g – 1of – 1 dir.
[quote]

Cevapla:

Nickin:

 Metin rengi:

 Metin büyüklüğü:
Tag leri kapat



Bütün konular: 17
Bütün postalar: 441
Bütün kullanıcılar: 25
Şu anda Online olan (kayıtlı) kullanıcılar: Hiçkimse crying smiley
 
   
 
TÜRKİYE CANIM FEDA

HTML KOD

Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol